Calchylus Documentation
Release 1a

Marko Manninen

Mar 05, 2019

Contents

1 Contents 3
.1 Introduction e e e e e 3
1.2 Quickstart e e e e e e e e e 4

1.2.1 Explanation e e e e e e e e e e e 4
1.3 Theory o o o o e e e e 5

1.3.1 Historical perspectives v v v v v v i e e e e e e e e e e e e e e e e e e 5
1.4 Concepts of Lambda calculus e e 5
1.5 Lambdaexpressionsin calchylusmodule 6
1.6 Easy native implementation Lo e e e e e e e e e e 7
1.7 Evaluation stages e e e e e e e e e 8
1.8 Initialization MACTOS o v v i i e e e e e e e e e e e e e 8
1.9 Macroshorthands L e 9
LIO TestS . .o v o e e e e e e e e e e e e 11
111 References o o e e e e e e e e 11

Calchylus Documentation, Release 1a

calchylus is a computer installable Hy module that is used to evaluate Lambda expressions, and furthermore
through this documentation, shine light to the basics of Lambda calculus (also written as A-calculus).

$$\Large = x.(y.x \space (y \space y)) \space (y.x \space (y \space y))$$

Contents 1

http://docs.hylang.org

Calchylus Documentation, Release 1a

2 Contents

CHAPTER 1

Contents

1.1 Introduction

calchylus is a computer installable Hy module that is used to evaluate Lambda expressions, and furthermore
through this documentation, shine light to the basics of Lambda calculus (also written as A-calculus).

Note: Lambda calculus is a formal system in mathematical logic for expressing computation that is based on function
abstraction and application using variable binding and substitution.

The target audience is those who:
a) are interested in the theory and the history of the programming languages
b) may have or are interested to gain some experience in Python and/or Lisp
¢) who wants to narrow the gap between mathematical notation and programming languages, especially by means
of logic
Andrew Bayer writes in his blog post about formal proofs and deduction:
Traditional logic, and to some extent also type theory, hides computation behind equality.

Lambda calculus, on the other hand, reveals how the computation in logic is done by manipulation of the Lambda
terms. Manipulation rules are simple and were originally made with a paper and a pen, but now we rather use com-
puters for the task. Lambda calculus also addresses the problem, what can be proved and solved and what cannot be
computed in a finite time. Formally these are called the decidability and the halting problem.

Beside evaluating Lambda expressions, calchylus module can serve as a starting point for a mini programming
language. Via custom macros representing well known Lambda forms, calchylus provides all necessary elements
for boolean, positive integer, and list data types as well as conditionals, loops, variable setters, imperative do structure,
logical connectives, and arithmetic operators. You can build upon that, for example real numbers, even negative
complex numbers if that makes any sense. Your imagination is really the only limit.

Finally, when investigating the open source calchylus implementation that is hosted on GitHub , one can expect
to get a good understanding of the higher order functions and the combinatory logic, not the least of the fixed point

http://docs.hylang.org
https://en.wikipedia.org/wiki/Lambda_calculus
http://math.andrej.com/2016/08/30/formal-proofs-are-not-just-deduction-steps/
https://plato.stanford.edu/entries/computability/#UnsHalPro
http://www.huffingtonpost.com/entry/how-to-describing-alan-turings-halting-problem-to_us_58d1ae08e4b062043ad4add7
http://calchylus.readthedocs.io/en/latest/macros.html
https://cs.stackexchange.com/questions/2272/representing-negative-and-complex-numbers-using-lambda-calculus?noredirect=1&lq=1
https://github.com/markomanninen/calchylus
https://en.wikipedia.org/wiki/Combinatory_logic

Calchylus Documentation, Release 1a

combinator or shortly, combinator:

$$\Large = x.(y.x \space (y \space y)) \space (y.x \space (y \space y))$$

1.2 Quick start

For people willing to get hands quickly on coding:
Install

’$ pip install calchylus ‘

Open Hy

s ny |

Import

’ (require [calchylus.lambdas [*]]) ‘

Initialize

’ (with-alpha-conversion—-and-macros L ,) ‘

Lambda dance

o, (x (x (X (x (x v))))) a b) ; output: (a (a (a (a (a b))))) ‘

’(FIBONACCI SEVEN x y) ,; output: (x (x (x (x (x (x (x (x (x (x (x (x (xy))))))))))))) ‘

1.2.1 Explanation

calchylus module works in Windows, Linux, and MacOS operating systems. 3.7 or greater is required. The whole
great Python ecosystem can be installed from Anaconda.

Install Hy language interpreter and calchylus module by using pip Python package management tool:

’$ pip install calchylus ‘

Open Hy, since calchylus is mostly written as Hy macros:

(s ny |

Import Lambda calculus macros:

’ (require [calchylus.lambdas [%]]) ‘

Define Lambda function indicator letter I and Lambda argument-body separator character , with one of the initializer
macros:

’ (with-alpha-conversion—-and-macros L ,) ‘

By with-alpha-conversion-and-macros we want to say that arguments should be internally renamed to
prevent argument name collision and that we want to load custom macros representing Lambda forms.

Now, we are ready to evaluate Lambda expressions. Here we apply Church numeral five to the two values, a and b:

4 Chapter 1. Contents

https://www.anaconda.com/download/
http://calchylus.readthedocs.io/en/latest/inits.html
http://calchylus.readthedocs.io/en/latest/inits.html
https://en.wikipedia.org/wiki/Church_encoding

Calchylus Documentation, Release 1a

’(va ;o (x (x (x (x (xv))))) a b)
[output]
’(a (a (a (a (a b)))))

Without going deeper into this yet, we can see that all x got replaced by a and all y got replaced by b.

Predefined macros are available as shorthands for the most common Lambda forms. For example, calculating the
seventh Fibonacci number can be done by using the Church numeral SEVEN and the FITBONACCI shorthands:

’ (FIBONACCI SEVEN x v)

[output]

’(x (x (x (x (x (x (x (x (x (x (x (x (x¥)))))))))))))

That is the Church numeral 13, the seventh Fibonacci number.

In calcylus these custom macro shorthands representing Lambda forms serves as a mathematical and logical foun-
dation for a prototype programming language that is based on purely untyped Lambda calculus.

1.3 Theory

1.3.1 Historical perspectives

Notation and ideas of differentiable functions comes from the 17th century mathematician Gottfried Leibniz. Early
functions dealt with the continuous change of the values. By the 20th century, functions were generalized to map
between any two sets, inputs and outputs.

Lambda calculus was invented by Alonzo Church in the 1930s. That happened actually a decade before modern
electrically powered computers were created. Lambda calculus can be described as the simplest and the smallest
universal Turing complete programming language.

Note: In mathematics, functions are often seen as graphs. In the Lambda calculus, functions are seen as formulas and
rules instead. It is a system for manipulating functions as expressions.

LISP (LISt Processor) 1.5 was specified in 1958 by John McCarthy. It is the second oldest language after FORTRAN
(FORmula TRANslator), both currently in active use.

In February 1991, Guido van Rossum published the codebase for Python version 0.9.0.

Hy, that is meant to operate as a transparent LISP front end to Python’s AST, was introduced at PyCon 2013 by Paul
Tagliamonte.

calchylus module was programmed with Hy by Marko Manninen in 09/2017.

1.4 Concepts of Lambda calculus

Lambda calculus takes everything to the very few basic computational ideas. First of all, there are only three concepts
necessary to express Lambda calculus:

1. variables, that are any single or multiple letter identifiers designating parameters or mathematical values

1.3. Theory 5

http://calchylus.readthedocs.io/en/latest/macros.html
https://en.wikipedia.org/wiki/Fibonacci_number
http://calchylus.readthedocs.io/en/latest/macros.html
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#Mathematician
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/Guido_van_Rossum#Python
https://github.com/paultag
https://github.com/paultag
https://github.com/markomanninen

Calchylus Documentation, Release 1a

2. abstractions, that are function definitions which binds arguments to the function body
3. application, that applies the function abstraction to the variables

In the original Lambda calculus you could define one and one only argument per function, but even before Lambda
calculus in 1920’s Schonfinkel showed that nested unary functions can be used to imitate multiary functions.

Later this mechanism settled down to be called as “currying” and is fully implemented in the calchylus module.
Two other syntactic rules must be introduced to be able to write and evaluate Lambda applications:

1. Lambda function indicator, or binding operator that is usually a Greek lambda letter: A

2. Lambda function argument and body separator, that is usually a dot: .
Optionally two more syntax rules can be implemented:

3. Parentheses to group and indicate Lambda applications, abstractions, function bodies and variables. The most
convenient way is to use left (and right) parentheses. Other purpose of using parentheses is to visually make
Lambda expressions easier to read and to avoid arbitrarities in Lambda expressions.

4. Space character to distinct function indicator, separator, variables, body, and arguments. This is optional, be-
cause in the simplest Lambda calculus implementation single character letters are used to denote variables. But
it is easy to see that this would be quite limiting for the practical purposes.

Knowing these we should be fine to write Lambda expressions.

1.5 Lambda expressions in calchylus module

All three concepts and four rules are implemented in the calchylus module so that for example the very basic
Lambda calculus identity application Ax . x y becomes (L x , x y) incalchylus notation. Infact, the function
indicator and the separator character can be freely defined in calchylus by with- initialization macros.

In the most of the examples we will use L and , because it will be easier to type L from the keyboard. Using the
comma rather than the dot comes from the Hy programming language environment restrictions, where the dot is a
reserved letter for cons in list processing.

Let us strip down the former expression and show how all rules are taking place in it.

In (L x , x y),Listhe Lambda function indicator and parentheses () indicate the whole application that should
be evaluated. x before the separator , is the function argument. x after the separator, but :underline:‘before the next
space‘ is the function body. Finally y is the value for the function, thus we have a full application here, rather than
just an abstraction. Abstraction would, on the other hand be: (L x , x).

Note:
In mathematics, identity function can be denoted either by $$f(x) = x$$ or by
$$x — f(x)$$.

Because these rules are notable in any functional and Lisp like language, there is a great temptation to implement
Lambda calculus evaluator as a native anonymous function calls. The problem with this approach is very subtle and
will bring practicer to the deep foundations of the programming languages. That is, to decide in which order to evaluate
arguments and functions and how to deal with argument name collisions.

Let us first see the easy native implementation of the Lambda calculus to learn what all this means.

6 Chapter 1. Contents

https://en.wikipedia.org/wiki/Moses_Sch%C3%B6nfinkel#Work
http://calchylus.readthedocs.io/en/latest/concepts.html
http://calchylus.readthedocs.io/en/latest/concepts.html

Calchylus Documentation, Release 1a

1.6 Easy native implementation

This is the simple implementation of the Lambda calculus evaluator. It will utilize the native anonymous function
declaration £n in Hy.

Most of the main programming languages supports anonymous functions, with notable exceptions of Ada, C, COBOL,
Fortran, and Pascal.

(eval-and-compile
; specify separator char
(setv separator '-)
; find the index of the element from the list
(defn index [elm lst]
; 1f the element is not found, return -1

(try (.index lst elm) (except [ValueError] -1))))
; main lambda expression macro
(defmacro [&rest expr]

; get the index of the argument-body separator
(setv idx (index separator expr))
; cut the arguments before the separator and append to the function
"(fn ~(cut expr 0 (if (pos? idx) idx 0))
; cut the body of the expression and append to the function
~@ (cut expr (inc idx))))

#! /usr/bin/env hy
; native function utilizer by lambda calculus syntax in Hy
(eval-and-compile
; specify separator char
(setv separator '-)
; find the numerical index of the element from the list
(defn index [elm 1lst]
; if the element is not found, return -1
(try (.index 1lst elm) (except [ValueError] -1))))
; main lambda expression macro
(defmacro A [&rest expr]
; get the index of the argument-body separator
(setv idx (index separator expr))
; cut the arguments before the separator and append to the function
“(fn ~(cut expr 0 (if (pos? idx) idx 0))
; cut the body (And the rest of the arguments) of the expression and append to,
—the function
~@(cut expr (inc idx))))

In Hy anonymous function is created with (fn [args] body). Because Hy is Lisp at frontend, evaluation order
of the elements in the program expression is very similar to Lambda calculus syntax. The first element will be the
function and the rest of the elements are arguments to the function, where arguments can of cource be functions
themselves.

So the usage of the anonymous function in Hy is:
((fn [args] (print args)) ‘args)

From that point of view, it really is just a matter of implementing Lambda calculus syntax to functionality, that already
exists in Hy.

http://docs.hylang.org/en/stable/language/api.html#fn

1.6. Easy native implementation 7

https://en.wikipedia.org/wiki/Anonymous_function
http://docs.hylang.org/en/stable/language/api.html#fn

Calchylus Documentation, Release 1a

1.7 Evaluation stages

Next we need some evaluation rules to call the function with given input and give the result. These rules or procedures
are called:

* alpha conversion

¢ beta reduction
Optional:

* eta conversion

The most of the modern computer languages utilizes some notation of functions. More precicely, anonymous functions
that are not supposed to be referenced by a name in a computer program, at first seems to be equivalent to Lambda
calculus. But there are some catches one needs to be aware of.

1.8 Initialization macros

After importing calchylus module with (require [calchylus.lambdas [x]]), the system itself is ini-
tialized by one of the four start up macros:

* with-macros that loads macro shorthands

* with-alpha-conversion that makes argument renaming behind the curtain
* with-alpha-conversion—-and-macros that loads both features

e with-alpha-conversion—-nor-macros that loads neither one

with-alpha-conversion—-and-macros is the recommended way of using the calchylus module, because
it will provide automatic alpha conversion for variable names and import useful shorthands for dozens of well known
custom lambda forms.

There are two parameters you must use on initialization macros to specify the syntax of the Lambda expressions:
1. lambda function identifier (more formally called the binding operator)
2. argument and body separator (delimitter)

Identifier is usually the Greek lambda letter A, but it can be any character or string you desire. One can find letters like
\, %, | lambda |, and L used on different Lambda calculus implementations.

In Hy, even unicode letters are supported, which is sometimes typographically satisfying for printing purposes. Writing
unicode letters from the keyboard however, can be tricky. Most probably, one needs to rely on extensive copy and paste,
if an unicode identifier and separator is used.

For a demonstration, let us load the full recommended set from the calchylus module:

’(with—alpha—conversion—and—macros A s

There will be an output after the successful initialization, which indicates the last created lambda function, something
like:

’<function <lambda> at 0x000001790B7208C8>

Now we can start evaluating Lambda expressions with the given identifiers:

’(A x + (Ay - (v x)) 'first 'second)

8 Chapter 1. Contents

http://calchylus.readthedocs.io/en/latest/evaluation.html

Calchylus Documentation, Release 1a

[output]

(second first)

Althought using with-alpha-conversion—-and-macros is the recommended, for efficiency, testing, and
benchmarking purposes one would sometimes want to load only macros to the global Hy environment by
with-macros initializer.

Similarly, by initializing with—-alpha-conversion, macros are discarded but alpha conversion is activated. In
that case you cannot use macro shorthands on Lambda expressions, which may or may not be a good idea, depending
on your purpose.

Lastly, there is an option to do neither one by with-alpha-conversion-nor-macros. You will like hit some
problems like recursion error if using this with complex Lambda expressions. With a very careful argument name
selection you could pass these problems, but one should note that there aren’t any internal warnings triggered if
argument name collision happens. Similarly, if there are any arguments that are not bound, not used, or not replaced,
system is mute with it.

Example from notebook.. .

1.9 Macro shorthands

Whilst in Lambda calculus there is no limit on how many or what kind of forms one can create, there is a set of common
forms useful for constructing Lambda expressions. Named forms are provided as macros in Hy based calchylus
module and they serve for shorthands when coding in Lambda calculus. Named forms are useful in explaining Lambda
calculus and they make expressions more compact, readable, and understandable.

This is the list of the all available macros for Lambda forms in calchylus module:
Basic constructors

e APP - an application

* CONST - a constant

e IDENT - an identity
Boolean constructors

e TRUE - an arbitrary tautology

e FALSE - an arbitrary contradiction
Logical connective constructors

e Unary

— NOT - a negation
* Binary

— AND - a conjuction

OR - a disjunction

— XOR - an exclusive disjunction

IMP - a material implication
— EQV - an equivalence / a material biconditional
Structural constructors

e COND - a condition block for flow control

1.9. Macro shorthands 9

http://calchylus.readthedocs.io/en/latest/macros.html

Calchylus Documentation, Release 1a

LET - introduce a variable/variables with a value / values, last term is the function body!
LET~* - same as LET, but consequencing variables can use former variables in the body

DO - do things in sequence, similar to LET x, but except setters are disclosed

2-tuple constructor

PAIR - a nested ordered pair
HEAD - a head of the pair

TAIL - atail of the pair

List constructors

LIST - create list with sequential items, generates nested pairs from given terms
PREPEND - prepend to the beginning of the list
APPEND - append to the end of the list
FIRST - the first item of the list
SECOND - the second item of the list
LAST - the last item of the list
LEN - length of the list
EMPTY? - is given term an empty list?
NIL? -is given term nil?
Internal
— NIL - anil for the empty set

— - anempty set

Church numerals

NUM - a Church numeral generator
ZERO - the number zero, same as FALSE
numerals from one to ten
— ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN

NUM? - is given term a number, unary predicate checker for Church numbers

Number equivalence

ZERO? - is number zero?

EQ? - are two numbers equal?

LEQ? - is number a equal or smaller than b?
GEQ? - is number a equal or greater than b?
LE? - is number a less than b?

GE? - is number a greater than b?

Arithmetic constructors

SUCC - a successor of a number

PRED - a predecessor of a number

10

Chapter 1. Contents

https://en.wikipedia.org/wiki/Tuple#Tuples_as_nested_ordered_pairs

Calchylus Documentation, Release 1a

* SUM - a summa of two numbers
* SUB - a substraction of two numbers
* PROD - a product of two numbers
e EXP - the nth power of number x
Recursive constructors
* SELF - a self application
* YCOMB - an Y combinator
Sample mathematical functions
* SUMMATION - the nth triangular number
* FACTORIAL - a product of numbers up to n

e FIBONACCI - the nth Fibonacci number

1.10 Tests

Church numerals are one of the most common number representations in Lambda calculus.
just the Lambda term, as it is more conventionally called

Undecidability proof of the halting problem using lambda calculus
https://yinwang(.wordpress.com/2012/10/25/halting/

Computability and Complexity - From a Programming Perspective Neil D. Jones
http://www.diku.dk/~neil/comp2book2007/book-whole.pdf

Lambda Calculus, Prof. Tobias Nipkow (2012)
https://www21.in.tum.de/teaching/logik/SS13/lambda-en.pdf

Decidability for Non-Standard Conversions in Typed Lambda-Calculi, Freiric Barral (2008)
http://www2.tcs.ifi.Imu.de/~barral/doc/Barral Thesis.pdf

Short Introduction to the Lambda-calculus, Franco Barbanera ()

http://www.dmi.unict.it/~barba/Linguaggill.html/READING_MATERIAL/LAMBDACALCULUS/
LAMBDACALCULUS.1.HTM

Collected Lambda Calculus Functions
http://jwodder.freeshell.org/lambda.html

Deriving Recursive Programs
http://faculty.ycp.edu/~dhovemey/fall2011/cs340/lecture/lecture 14.html
©

1.11 References

No work could be done without the work of previous ones. Here are some references that has been used with the
implementation and the documentation of the calchylus module:

1.10. Tests 11

https://yinwang0.wordpress.com/2012/10/25/halting/
http://www.diku.dk/~neil/comp2book2007/book-whole.pdf
https://www21.in.tum.de/teaching/logik/SS13/lambda-en.pdf
http://www2.tcs.ifi.lmu.de/~barral/doc/BarralThesis.pdf
http://www.dmi.unict.it/~barba/LinguaggiII.html/READING_MATERIAL/LAMBDACALCULUS/LAMBDACALCULUS.1.HTM
http://www.dmi.unict.it/~barba/LinguaggiII.html/READING_MATERIAL/LAMBDACALCULUS/LAMBDACALCULUS.1.HTM
http://jwodder.freeshell.org/lambda.html
http://faculty.ycp.edu/~dhovemey/fall2011/cs340/lecture/lecture14.html

Calchylus Documentation, Release 1a

Lambda Calculus with Types by Henk Barendregt, Wil Dekkers, Richard Statman
Concepts in Programming Languages by John C. Mitchell

Lecture Notes on the Lambda Calculus by Peter Selinger

A Brief History of Computing by Gerard O’Regan

The Lambda Calculus in the Stanford Encyclopedia of Philosophy.

12

Chapter 1. Contents

https://www.cambridge.org/core/books/lambda-calculus-with-types/65DC18AC262498B0F93A688CBE748048
https://github.com/advaitpatel/SE-450-Object-Oriented-Software-Development/blob/master/Concepts%20in%20Programming%20Languages%20-%20MITCHELL.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://books.google.fi/books?id=QqrItgm351EC&printsec=frontcover
https://plato.stanford.edu/entries/lambda-calculus/

	Contents
	Introduction
	Quick start
	Explanation

	Theory
	Historical perspectives

	Concepts of Lambda calculus
	Lambda expressions in calchylus module
	Easy native implementation
	Evaluation stages
	Initialization macros
	Macro shorthands
	Tests
	References

